728x90
반응형

Standford University의 CS231n: Convolutional Neural Networks for Visual Recognition (Spring 2017)강의를 들으면서 공부한 내용을 블로그에 포스팅할 계획이다.

참고한 자료 ⛓️‍💥

1. CS231n 강의 동영상

https://youtube.com/playlist?list=PLC1qU-LWwrF64f4QKQT-Vg5Wr4qEE1Zxk&si=KHBmWOifxG5cmhIi

 

Stanford University CS231n, Spring 2017

CS231n: Convolutional Neural Networks for Visual Recognition Spring 2017 http://cs231n.stanford.edu/

www.youtube.com

2. 공식 GitHub

:과제가 올라와 있어서, 최대한 풀면서 넘어가려고 한다. 

https://github.com/cs231n/cs231n.github.io

 

GitHub - cs231n/cs231n.github.io: Public facing notes page

Public facing notes page. Contribute to cs231n/cs231n.github.io development by creating an account on GitHub.

github.com

3. 한국어 자막

: 최대한 자막 없이 영어 그대로를 들을 예정이다.

https://github.com/visionNoob/CS231N_17_KOR_SUB

 

GitHub - visionNoob/CS231N_17_KOR_SUB: CS231N 2017 video subtitles translation project for Korean Computer Science students

CS231N 2017 video subtitles translation project for Korean Computer Science students - visionNoob/CS231N_17_KOR_SUB

github.com

 

계획표 🌏

정리하는대로 업데이트 할 예정

No Lecture URL
1 Introduction to Convolutional Neural Networks for Visual Recognition  
2 Image Classification  
3 Loss Functions and Optimization  
4 Introduction to Neural Networks  
5 Convolutional Neural Networks  
6 Training Neural Networks I  
7 Training Neural Networks II  
8 Deep Learning Software  
9 CNN Architectures  
10 Recurrent Neural Networks  
11 Detection and Segmentation  
12 Visualizing and Understanding  
13 Generative Models  
14 Deep Reinforcement Learning
 

 

728x90
반응형

+ Recent posts